Evaluating the Potential of Multi-Walled Carbon Nanotube-Modified Clay as a Landfill Liner Material

Author:

Liu Xibin1,Chen Zhengfa2,Qi Lin1

Affiliation:

1. School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China

2. School of Urban Construction, Changzhou University, Changzhou 213164, China

Abstract

In this paper, the feasibility of multi-walled carbon nanotube (MWCNT)-modified clay as a landfill liner material is investigated. Experiments were conducted on the modified clay with 0.5%, 1%, and 2% MWCNTs. The effects of the MWCNTs on the compaction characteristics, permeability coefficient, stress–strain curve, peak deviation stress, shear strength parameters (internal friction angle and cohesion), microstructures, and adsorption performance of the clay were analyzed. The results showed that the optimum moisture content (OMC) increased from 16.15% to 18.89%, and the maximum dry density (MDD) decreased from 1.79 g/cm3 to 1.72 g/cm3 with the increase in MWCNTs. The permeability coefficients firstly fell and then gradually rose as the MWCNTs increased; the minimum permeability coefficient was 8.62 × 10−9 cm/s. The MWCNTs can also effectively increase the peak deviation stress of the clay, and at the maximum level, the peak deviation stress was increased by 286%. SEM images were processed using the Pore and Crack Analysis System (PCAS), and the results showed that the appropriate amount of MWCNTs could fill the pores and strengthen the clay structure. The effect of the MWCNT-modified clay on the adsorption performance of common heavy metal ions Cd2+, Mn2+ and Cu2+ in landfill leachate was analyzed by batch adsorption tests. The maximum adsorption capacities (Qmax) of Cu2+, Cd2+ and Mn2+ in the 2% MWCNT-modified clay were, respectively, 41.67 mg/g, 18.69 mg/g, and 4.97 mg/g. Compared with the clay samples without MWCNTs, the adsorption properties of Cu2+, Cd2+, and Mn2+ were increased by 228%, 124%, and 202%, respectively. Overall, the results suggest that MWCNT-modified clays have the potential to be suitable barrier materials for the construction of landfills.

Funder

Zhengfa Chen

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3