Mechanical and Thermal Properties of Hybrid Fibre-Reinforced Concrete Exposed to Recurrent High Temperature and Aviation Oil

Author:

Hossain Muhammad MonowarORCID,Al-Deen Safat,Hassan Md Kamrul,Shill Sukanta KumerORCID,Kader Md Abdul,Hutchison Wayne

Abstract

Over the years, leaked fluids from aircraft have caused severe deterioration of airfield pavement. The combined effect of hot exhaust from the auxiliary power unit of military aircraft and spilt aviation oils have caused rapid pavement spalling. If the disintegrated concreted pieces caused by spalling are sucked into the jet engine, they may cause catastrophic damage to the aircraft engine or physical injury to maintenance crews. This study investigates the effectiveness of incorporating hybrid fibres into ordinary concrete to improve the residual mechanical and thermal properties to prevent spalling damage of pavement. Three fibre-reinforced concrete samples were made with micro steel fibre and polyvinyl alcohol fibre with a fibre content of zero, 0.3%, 0.5% and 0.7% by volume fraction. These samples were exposed to recurring high temperatures and aviation oils. Tests were conducted to measure the effects of repeated exposure on the concrete’s mechanical, thermal and chemical characteristics. The results showed that polyvinyl alcohol fibre-, steel fibre- and hybrid fibre-reinforced concrete suffered a 52%, 40% and 26.23% of loss of initial the compressive strength after 60 cycles of exposure to the conditions. Moreover, due to the hybridisation of concrete, flexural strength and thermal conductivity was increased by 47% and 22%. Thus, hybrid fibre-reinforced concrete performed better in retaining higher residual properties and exhibited no spalling of concrete.

Funder

Department of Defence, Australian Government

Publisher

MDPI AG

Subject

General Materials Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3