Abstract
In this study, highly concentrated hydrogen nanobubble water was utilized as the blending water for cement mortar to improve its compressive and flexural strengths. Highly concentrated nanobubbles can be obtained through osmosis. This concentration was maintained by sustaining the osmotic time. The mortar specimens were cured for 28 days, in which the nanobubble concentration was increased. This improved their flexural strength by 2.25–13.48% and compressive strength by 6.41–11.22%, as compared to those afforded by plain water. The nanobubbles were densified at high concentrations, which caused a decrease in their diameter. This increased the probability of collisions with the cement particles and accelerated the hydration and pozzolanic reactions, which facilitated an increase in the strength of cement. Thermogravimetric analysis and scanning electron microscopy were used to confirm the development of calcium silicate hydrate (C-S-H) and hydration products with an increase in the nanobubble concentration. Quantitative analysis of the hydration products and the degree of hydration were calculated by mineralogical analysis.
Funder
National Research Foundation of Korea
Ministry of Land, Infrastructure and Transport of the Korean government
Subject
General Materials Science
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献