Author:
Yuan Hua,Ren Guanzhou,Liu Kang,Zhao Zhiliang
Abstract
Enzyme-induced calcium carbonate precipitation (EICP) technology can improve the strength of treated soil. But it also leads to remarkable brittleness of the soil. This study used polyvinyl alcohol (PVA) fiber combined with EICP to solidify sand. Through the unconfined compressive strength (UCS) test, the effect of PVA fiber incorporation on the mechanical properties of EICP-solidified sand was investigated; the distribution of CaCO3 in the sample and the microstructure of fiber-reinforced EICP-treated sand were explored through the calcium carbonate content (CCC) test and microscopic experiment. Compared with the sand treated by EICP, the strength and stiffness of the sand reinforced by the fiber combined with EICP were greatly improved, and the ductility was also improved to a certain extent. However, the increase of CCC was extremely weak, and the inhomogeneity of CaCO3 distribution was enlarged; the influence of fiber length on the UCS and CCC of the treated sand was greater than that of the fiber content. The improvement of EICP-solidified sand by PVA fiber was mainly due to the formation of a “fiber–CaCO3–sand” spatial structure system through fiber bridging, not the increase of CCC.
Funder
Department of science and technology of Henan Province
Subject
General Materials Science
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献