Adhesion to Zirconia: A Systematic Review of Surface Pretreatments and Resin Cements

Author:

Comino-Garayoa RubénORCID,Peláez JesúsORCID,Tobar Celia,Rodríguez Verónica,Suárez María JesúsORCID

Abstract

This systematic review aims to evaluate the different pretreatments of the zirconia surface and resin cement in order to determine a valid operative protocol for adhesive cementation. Methodologies conducted for this study followed the Prisma (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines. An electronic search was performed in four databases. The established focus question was: “What type of surface conditioning method is the one that obtains the best adhesion values to zirconia over time by applying a resin cement?” Forty-five relevant papers were found to qualify for final inclusion. In total, 260 different surface pretreatment methods, mainly combinations of air-abrasion protocols and adhesive promoters, were investigated. Altogether, the use of two artificial aging methods, three types of cement and four testing methods was reported. The results showed that mechanicochemical surface pretreatments offered the best adhesive results. Self-adhesive cement and those containing 10-MDP obtained the best results in adhesion to zirconia. Artificial aging reduced adhesion, so storage in water for 30 days or thermocycling for 5000 cycles is recommended. A standardized adhesive protocol has not been established due to a lack of evidence

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3