Waterlogging Resistance Evaluation Index and Photosynthesis Characteristics Selection: Using Machine Learning Methods to Judge Poplar’s Waterlogging Resistance

Author:

Xie XuelinORCID,Shen Jingfang

Abstract

Flood disasters are the major natural disaster that affects the growth of agriculture and forestry crops. Due to rapid growth and strong waterlogging resistance characteristics, many studies have explained the waterlogging resistance mechanism of poplar from different perspectives. However, there is no accurate method to define the evaluation index of waterlogging resistance. In addition, there is also a lack of research on predicting the waterlogging resistance of poplars. Based on the changes of poplar biomass and seedling height, the evaluation index of poplar resistance to waterlogging was well determined, and the characteristics of photosynthesis were used to predict the waterlogging resistance of poplars. First, four methods of hierarchical clustering, lasso, stepwise regression and all-subsets regression were used to extract the photosynthesis characteristics. After that, the support vector regression model of poplar resistance to waterlogging was established by using the characteristic parameters of photosynthesis. Finally, the results show that the SVR model based on Stepwise regression and Lasso method has high precision. On the test set, the coefficient of determination (R2) was 0.8581 and 0.8492, the mean square error (MSE) was 0.0104 and 0.0341, and the mean relative error (MRE) was 9.78% and 9.85%, respectively. Therefore, using the characteristic parameters of photosynthesis to predict the waterlogging resistance of poplars is feasible.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

High-end foreign expert introduction program, National strategic science and technology development fund

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3