Author:
Zhao Jing,Cao Jie,Tian Siquan,Chen Yong,Zhang Shouyu
Abstract
Fish communities play an important role in determining the dynamics of marine ecosystems, while the evaluation and formulation of protective measures for these fish communities depends on the quality and quantity of data collected from well-designed sampling programs. The ecological model was used first to predict the distribution of the demersal fish community as the “true” population for the sampling design. Four sampling designs, including simple random sampling, systematic sampling, and stratified sampling with two sampling effort allocations (proportional allocation and Neyman allocation), were compared to evaluate their performance in estimating the richness and biodiversity indices of the demersal fish community. The impacts of two different temperature change scenarios, uniform temperature and non-uniform temperature increase on the performance of the sampling designs, were also evaluated. The proportional allocation yielded the best estimates of fish community richness and biodiversity relative to a synthetic baseline. However, its performance was not always robust relative to the simulated temperature change. When the water temperature changed unevenly, systematic sampling tended to perform the best. Thus, it is important to adjust the strata for a stratified sampling when the habitat experiences large changes. This suggests that we need to carefully evaluate the appropriateness of stratification when temperature change-induced habitat changes are large enough to result in substantial changes in the fish community.
Funder
National Natural Science Foundation of China
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献