Dual Co-Attention-Based Multi-Feature Fusion Method for Rumor Detection

Author:

Bing ChangsongORCID,Wu Yirong,Dong Fangmin,Xu Shouzhi,Liu Xiaodi,Sun ShuifaORCID

Abstract

Social media has become more popular these days due to widely used instant messaging. Nevertheless, rumor propagation on social media has become an increasingly important issue. The purpose of this study is to investigate the impact of various features in social media on rumor detection, propose a dual co-attention-based multi-feature fusion method for rumor detection, and explore the detection capability of the proposed method in early rumor detection tasks. The proposed BERT-based Dual Co-attention Neural Network (BDCoNN) method for rumor detection, which uses BERT for word embedding. It simultaneously integrates features from three sources: publishing user profiles, source tweets, and comments. In the BDCoNN method, user discrete features and identity descriptors in user profiles are extracted using a one-dimensional convolutional neural network (CNN) and TextCNN, respectively. The bidirectional gate recurrent unit network (BiGRU) with a hierarchical attention mechanism is used to learn the hidden layer representation of tweet sequence and comment sequence. A dual collaborative attention mechanism is used to explore the correlation among publishing user profiles, tweet content, and comments. Then the feature vector is fed into classifier to identify the implicit differences between rumor spreaders and non-rumor spreaders. In this study, we conducted several experiments on the Weibo and CED datasets collected from microblog. The results show that the proposed method achieves the state-of-the-art performance compared with baseline methods, which is 5.2% and 5% higher than the dEFEND. The F1 value is increased by 4.4% and 4%, respectively. In addition, this paper conducts research on early rumor detection tasks, which verifies the proposed method detects rumors more quickly and accurately than competitors.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Information Systems

Reference35 articles.

1. A survey on fake news and rumour detection techniques

2. Drink bleach or do what now? covid-hera: A dataset for risk-informed health decision making in the presence of covid19 misinformation;Dharawat;arXiv,2020

3. CrowdQM: Learning aspect-level user reliability and comment trustworthiness in discussion forums;Morales;Adv. Knowl. Discov. Data Min.,2020

4. A Survey of Fake News

5. Detection and Resolution of Rumours in Social Media

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3