A Rating Prediction Recommendation Model Combined with the Optimizing Allocation for Information Granularity of Attributes

Author:

Li Jianfei,Wang YongbinORCID,Tao Zhulin

Abstract

In recent years, graph neural networks (GNNS) have been demonstrated to be a powerful way to learn graph data. The existing recommender systems based on the implicit factor models mainly use the interactive information between users and items for training and learning. A user–item graph, a user–attribute graph, and an item–attribute graph are constructed according to the interactions between users and items. The latent factors of users and items can be learned in these graph structure data. There are many methods for learning the latent factors of users and items. Still, they do not fully consider the influence of node attribute information on the representation of the latent factors of users and items. We propose a rating prediction recommendation model, short for LNNSR, utilizing the level of information granularity allocated on each attribute by developing a granular neural network. The different granularity distribution proportion weights of each attribute can be learned in the granular neural network. The learned granularity allocation proportion weights are integrated into the latent factor representation of users and items. Thus, we can capture user-embedding representations and item-embedding representations more accurately, and it can also provide a reasonable explanation for the recommendation results. Finally, we concatenate the user latent factor-embedding and the item latent factor-embedding and then feed it into a multi-layer perceptron for rating prediction. Extensive experiments on two real-world datasets demonstrate the effectiveness of the proposed framework.

Publisher

MDPI AG

Subject

Information Systems

Reference32 articles.

1. Matrix Factorization Techniques for Recommender Systems

2. Probabilistic matrix factorization;Salakhutdinov;Adv. Neural Inf. Processing Syst.,2007

3. SVD-based incremental approaches for recommender systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3