Context-Aware Collaborative Filtering Using Context Similarity: An Empirical Comparison

Author:

Zheng YongORCID

Abstract

Recommender systems can assist with decision-making by delivering a list of item recommendations tailored to user preferences. Context-aware recommender systems additionally consider context information and adapt the recommendations to different situations. A process of context matching, therefore, enables the system to utilize rating profiles in the matched contexts to produce context-aware recommendations. However, it suffers from the sparsity problem since users may not rate items in various context situations. One of the major solutions to alleviate the sparsity issue is measuring the similarity of contexts and utilizing rating profiles with similar contexts to build the recommendation model. In this paper, we summarize the context-aware collaborative filtering methods using context similarity, and deliver an empirical comparison based on multiple context-aware data sets.

Publisher

MDPI AG

Subject

Information Systems

Reference58 articles.

1. The Managing of Organizations: The Administrative Struggle;Gross,1964

2. Information Overload: Causes, Symptoms and Solutions;Ruff,2002

3. Matrix Factorization Techniques for Recommender Systems

4. Content-based recommender systems: State of the art and trends;Lops,2011

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Art and Science of User Engagement;Advances in Multimedia and Interactive Technologies;2024-01-26

2. KT-CDULF: Knowledge Transfer in Context-Aware Cross-Domain Recommender Systems via Latent User Profiling;IEEE Access;2024

3. How are user movie ratings predicted using collaborative filtering?;2023 15th International Conference on Innovations in Information Technology (IIT);2023-11-14

4. Using temporal user profiles in collaborative filtering recommender system;2023 XXIX International Conference on Information, Communication and Automation Technologies (ICAT);2023-06-11

5. Empowering neural collaborative filtering with contextual features for multimedia recommendation;Multimedia Systems;2023-05-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3