Out-of-Plane Experimental Study of Strengthening Slender Non-Structural Masonry Walls

Author:

Klun Martin,Antolinc DavidORCID,Bosiljkov VlatkoORCID

Abstract

Non-structural masonry partition walls, which are mainly designed to functionally separate spaces in the buildings and provide physical barriers between rooms, were traditionally built from either solid or hollow clay units or autoclaved aerated concrete blocks. Recent earthquakes have revealed the high vulnerability of these elements, even in the case of low to moderate seismic events. Public buildings (e.g., hospitals and schools) are particularly vulnerable. Due to their greater floor-to-floor heights and the response spectra of floors, the dynamic response of primary structure may provoke significantly higher seismic loads on partition walls. The main goal of the presented experimental study was to investigate the behavior of slender partition walls loaded out-of-plane with a simple and cost-effective approach that may be applied through routine refurbishment works. Eleven full-scale slender non-structural masonry partition walls were built with brickwork and cement–lime mortar. Eight of them were additionally strengthened with different techniques, including glass fiber-reinforcing fabric and low-cost glass fiber-rendering mesh. To evaluate the efficiency of the applied strengthening solutions, out-of-plane quasi-static cyclic experiments were conducted. By applying meshes over the entire surfaces, the resistance was significantly improved with the low-cost approach reaching half of the resistance of the commercially available strengthening system preserving the same displacement capacity.

Funder

Javna Agencija za Raziskovalno Dejavnost RS

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3