Abstract
Non-structural masonry partition walls, which are mainly designed to functionally separate spaces in the buildings and provide physical barriers between rooms, were traditionally built from either solid or hollow clay units or autoclaved aerated concrete blocks. Recent earthquakes have revealed the high vulnerability of these elements, even in the case of low to moderate seismic events. Public buildings (e.g., hospitals and schools) are particularly vulnerable. Due to their greater floor-to-floor heights and the response spectra of floors, the dynamic response of primary structure may provoke significantly higher seismic loads on partition walls. The main goal of the presented experimental study was to investigate the behavior of slender partition walls loaded out-of-plane with a simple and cost-effective approach that may be applied through routine refurbishment works. Eleven full-scale slender non-structural masonry partition walls were built with brickwork and cement–lime mortar. Eight of them were additionally strengthened with different techniques, including glass fiber-reinforcing fabric and low-cost glass fiber-rendering mesh. To evaluate the efficiency of the applied strengthening solutions, out-of-plane quasi-static cyclic experiments were conducted. By applying meshes over the entire surfaces, the resistance was significantly improved with the low-cost approach reaching half of the resistance of the commercially available strengthening system preserving the same displacement capacity.
Funder
Javna Agencija za Raziskovalno Dejavnost RS
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献