Abstract
Person Re-Identification is an essential task in computer vision, particularly in surveillance applications. The aim is to identify a person based on an input image from surveillance photographs in various scenarios. Most Person re-ID techniques utilize Convolutional Neural Networks (CNNs); however, Vision Transformers are replacing pure CNNs for various computer vision tasks such as object recognition, classification, etc. The vision transformers contain information about local regions of the image. The current techniques take this advantage to improve the accuracy of the tasks underhand. We propose to use the vision transformers in conjunction with vanilla CNN models to investigate the true strength of transformers in person re-identification. We employ three backbones with different combinations of vision transformers on two benchmark datasets. The overall performance of the backbones increased, showing the importance of vision transformers. We provide ablation studies and show the importance of various components of the vision transformers in re-identification tasks.
Funder
Deanship of Scientific Research at Saudi Electronic University, Riyadh, Saudi Arabia
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献