A Novel Dual-Wavelength Method for Evaluating Temperature Effect in Fiber-Optic SPR Sensors

Author:

Su Ning,Luo Wei,Wang Liusan,Zhang Zhengyong,Wang Rujing

Abstract

The temperature effect is one of the critical factors to induce the resonance wavelength shift in fiber-optic surface plasmon resonance (SPR) sensors, which leads to the inaccuracy measurement of refractive index (RI) in practical applications. In this study, a novel dual-wavelength method is presented for fiber-optic SPR sensors to measure the changes of RI and temperature simultaneously in real time. A typical model of an SPR-based fiber optical sensor is constructed for theoretical analysis of temperature effect. Both the thermo-optic effect in the fiber core and phonon–electron scattering along with electron–electron scattering in the metal layer are studied systematically in the theoretical model. The linear and independent relationship, about the dependence of defined output signals on the RI and temperature, is validated by a theoretical calculation in specific dual wavelengths. A proof-of-concept experiment is conducted to demonstrate the capability of the presented dual-wavelength technique. The experimental results indicate that the presented dual-wavelength method is technically feasible and can be applied for practical application. Since the presented method only depends on the full advantages of the transfer spectrum data, it can be applied directly to the conventional single-channel fiber-optic SPR without any specific design structure of the sensor probe. The proposed method provides a new way to detect the RI under different thermal conditions and could lead to a better design for the fiber-optic SPR sensors.

Funder

Major scientific and technological innovation project of Shandong Province, China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3