Gaze Tracking Using an Unmodified Web Camera and Convolutional Neural Network

Author:

Ansari Mohd FaizanORCID,Kasprowski PawelORCID,Obetkal MarcinORCID

Abstract

Gaze estimation plays a significant role in understating human behavior and in human–computer interaction. Currently, there are many methods accessible for gaze estimation. However, most approaches need additional hardware for data acquisition which adds an extra cost to gaze tracking. The classic gaze tracking approaches usually require systematic prior knowledge or expertise for practical operations. Moreover, they are fundamentally based on the characteristics of the eye region, utilizing infrared light and iris glint to track the gaze point. It requires high-quality images with particular environmental conditions and another light source. Recent studies on appearance-based gaze estimation have demonstrated the capability of neural networks, especially convolutional neural networks (CNN), to decode gaze information present in eye images and achieved significantly simplified gaze estimation. In this paper, a gaze estimation method that utilizes a CNN for gaze estimation that can be applied to various platforms without additional hardware is presented. An easy and fast data collection method is used for collecting face and eyes images from an unmodified desktop camera. The proposed method registered good results; it proves that it is possible to predict the gaze with reasonable accuracy without any additional tools.

Funder

Silesian University of Technology

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Beyond Basic Tuning: Exploring Discrepancies in User and Setup Calibration for Gaze Estimation;Proceedings of the 2024 Symposium on Eye Tracking Research and Applications;2024-06-04

2. A review on visible-light eye-tracking methods based on a low-cost camera;Journal of Ambient Intelligence and Humanized Computing;2024-03-14

3. Gaze Tracking with Multi-Modal Neural Network in Desktop Environments Using Generic Web Camera;2024 6th International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE);2024-02-29

4. Gaze-Swin: Enhancing Gaze Estimation with a Hybrid CNN-Transformer Network and Dropkey Mechanism;Electronics;2024-01-12

5. Best low-cost methods for real-time detection of the eye and gaze tracking;i-com;2024-01-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3