The Framework of 6G Self-Evolving Networks and the Decision-Making Scheme for Massive IoT

Author:

Liu BeiORCID,Luo Jie,Su Xin

Abstract

The increasingly huge amount of device connections will transform the Internet of Things (IoT) into the massive IoT. The use cases of massive IoT consist of the smart city, digital agriculture, smart traffic, etc., in which the service requirements are different and even constantly changing. To fulfill the different requirements, the networks must be able to automatically adjust the network configuration, architectures, resource allocations, and other network parameters according to the different scenarios to match the different service requirements in massive IoT, which are beyond the abilities of the fifth generation (5G) networks. Moreover, the sixth generation (6G) networks are expected to have endogenous intelligence, which can well support the massive IoT application scenarios. In this paper, we first propose the framework of the 6G self-evolving networks, in which the autonomous decision-making is one of the vital parts. Then, we introduce the autonomous decision-making methods and analyze the characteristics of the different methods and mechanisms for 6G networks. To prove the effectiveness of the proposed framework, we consider one of the typical scenarios of massive IoT and propose an artificial intelligence (AI)-based distributed decision-making algorithm to solve the problem of the offloading policy and the network resource allocation. Simulation results show that the proposed decision-making algorithm with the self-evolving networks can improve the quality of experience (QoE) compared with the lower training.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference48 articles.

1. When Machine Learning Meets Privacy in 6G: A Survey

2. IMT Vision, Framework and Overall Odjectives of the Future Development of IMT for 2020 and Beyond,2015

3. Vision, requirements and network architecture of 6G mobile network beyond 2030

4. Requirements, Architectures and Technology Trends of 6G Network;Tang;Mob. Commun.,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3