Code Edit Recommendation Using a Recurrent Neural Network

Author:

Lee SeonahORCID,Lee Jaejun,Kang SungwonORCID,Ahn Jongsun,Cho Heetae

Abstract

When performing software evolution tasks, developers spend a significant amount of time looking for files to modify. By recommending files to modify, a code edit recommendation system reduces the developer’s navigation time when conducting software evolution tasks. In this paper, we propose a code edit recommendation method using a recurrent neural network (CERNN). CERNN forms contexts that maintain the sequence of developers’ interactions to recommend files to edit and stops recommendations when the first recommendation becomes incorrect for the given evolution task. We evaluated our method by comparing it with the state-of-the-art method MI-EA that was developed based on the association rule mining technique. The result shows that our proposed method improves the average recommendation accuracy by approximately 5% over MI-EA (0.64 vs. 0.59 F-score).

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference32 articles.

1. The Impact of View Histories on Edit Recommendations

2. Recommendation Systems for Software Engineering

3. Mining version histories to guide software changes

4. A Code Recommendation Method Using RNN Based on Interaction History;Cho;KIPS Trans. Softw. Data Eng.,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3