Phytochemical Constituents and Biological Activities of the Unexplored Plant Rhinanthus angustifolius subsp. grandiflorus

Author:

Zhang LeileiORCID,Zengin GokhanORCID,Rocchetti GabrieleORCID,Senkardes IsmailORCID,Sharmeen Jugreet B.,Mahomoodally Mohamad FawziORCID,Behl Tapan,Rouphael YoussefORCID,Lucini LuigiORCID

Abstract

In the present study, a total of 12 extracts of Rhinanthus angustifolius subsp. grandiflorus, an understudied hemiparasitic species, were obtained using different extraction techniques, namely, homogenizer-assisted extraction (HAE), maceration (MAC), soxhlet (SOX), infusion, and solvents (ethyl acetate, methanol, ethanol, and water), and were evaluated for their in vitro antioxidant and enzyme-inhibiting properties. Additionally, untargeted profiling based on high-resolution mass spectrometry targeted different phytochemical classes, namely, polyphenols, terpenoids, and alkaloids. The highest total phenolic and flavonoid contents were detected using methanol as the extraction solvent. Multivariate statistics following the untargeted profiling revealed that the extraction solvent had a hierarchically higher impact than the extraction method when considering the recovery of bioactive compounds. The methanolic extracts displayed the highest radical-scavenging antioxidant capacity, as provided by CUPRAC and FRAP assays. On the other hand, the water extracts (MAC and HAE) and the infusion extract showed the highest activity as metal chelators (25.66–27.51 mg EDTAE/g). Similarly, the water extract obtained by HAE and the infusion extract revealed the highest phosphomolybdenum activity (3.92 ± 0.14 and 3.71 ± 0.01 mmol TE/g, respectively). The different extracts also exhibited different enzyme inhibition potentials. For instance, HAE and MAC ethanolic extracts inhibited only α-amylase (0.69 ± 0.01 and 0.70 ± 0.01 mmol ACAE/g), while all the other extracts showed a dual inhibition against both carbohydrate-hydrolyzing enzymes tested (i.e., α-amylase: 0.07–0.69 mmol ACAE/g; α-glucosidase: 0.03–1.30 mmol ACAE/g). Nevertheless, the other extracts inhibited acetyl-, butyryl-cholinesterases, or both; MAC–water extract displayed no inhibition against the enzymes. Additionally, all the studied extracts were found to inhibit tyrosinase, ranging from 10.62 to 52.80 mg KAE/g. In general, the water extracts showed weaker inhibition towards the enzymes than the other extracts. This study demonstrated that R. angustifolius is an excellent source of natural antioxidants and enzyme inhibitors that could be further investigated and exploited for pharmaceutical purposes.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference51 articles.

1. Population genetic diversity and species relationships in the genusRhinanthusL. based on microsatellite markers

2. Chemical composition and bioactive properties of the essential oil of Rhinanthus angustifolius subsp;Kaya;grandiflorus. Bulg. Chem. Commun.,2017

3. Polyphenol content of Ononis arvensis L. and Rhinanthus serotinus (Schönh. Ex Halácsy & Heinr. Braun) Oborny used in the Transylvanian ethnomedicine;Denes;Int. J. Pharmacogn. Phytochem.,2015

4. Historical ethnobotanical review of medicinal plants used to treat children diseases in Romania (1860s–1970s)

5. 6′-O-benzoylshanzhiside methyl ester from Rhinanthus angustifolius subsp. Grandiflorus

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3