Repair of Voids in Multi-Labeled Triangular Mesh

Author:

Zhong Deyun,Li Benyu,Shi Tiandong,Li Zhaopeng,Wang Liguan,Bi Lin

Abstract

In this paper, we propose a novel mesh repairing method for repairing voids from several meshes to ensure a desired topological correctness. The input to our method is several closed and manifold meshes without labels. The basic idea of the method is to search for and repair voids based on a multi-labeled mesh data structure and the idea of graph theory. We propose the judgment rules of voids between the input meshes and the method of void repairing based on the specified model priorities. It consists of three steps: (a) converting the input meshes into a multi-labeled mesh; (b) searching for quasi-voids using the breadth-first searching algorithm and determining true voids via the judgment rules of voids; (c) repairing voids by modifying mesh labels. The method can repair the voids accurately and only few invalid triangular facets are removed. In general, the method can repair meshes with one hundred thousand facets in approximately one second on very modest hardware. Moreover, it can be easily extended to process large-scale polygon models with millions of polygons. The experimental results of several data sets show the reliability and performance of the void repairing method based on the multi-labeled triangular mesh.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference34 articles.

1. Polygon mesh repairing

2. Geological modelling from field data and geological knowledge

3. Three-dimensional modelling of geological surfaces using generalized interpolation with radial basis functions;Hillier;Math. Geol.,2014

4. Repair of Geological Models Based on Multiple Material Marching Cubes

5. Marching cubes: A high resolution 3D surface construction algorithm

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3