Abstract
We present a comprehensive investigation of the structural, electronic, mechanical, and optical properties of four promising candidates, namely Au2Cs2I6, Ag2GeBaS4, Ag2ZnSnS4, and AgCuPO4, for application in photovoltaic devices based on intermediate band (IB) cells. We perform accurate density functional theory calculations by employing the hybrid functional of Heyd, Scuseria, and Erhzerhof (HSE06). Calculations reveal that IBs are present in all proposed compounds at unoccupied states in the range of 0.34–2.19 eV from the Fermi level. The structural and mechanical stability of these four materials are also systematically investigated. Additional peaks are present in the optical spectra of these compounds, as characterised by a broadened energy range and high intensity for light absorption. Our findings, as reported in this work, may provide a substantial breakthrough on the understanding of these materials, and thus help the design of more efficient IB solar devices.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献