Author:
Asgher Urooj,Rasheed Muhammad,Al-Sumaiti Ameena,Rahman Atiq,Ali Ihsan,Alzaidi Amer,Alamri Abdullah
Abstract
Smart grid (SG) vision has come to incorporate various communication technologies, which facilitate residential users to adopt different scheduling schemes in order to manage energy usage with reduced carbon emission. In this work, we have proposed a residential load management mechanism with the incorporation of energy resources (RESs) i.e., solar energy. For this purpose, a real-time electricity price (RTP), energy demand, user preferences and renewable energy parameters are taken as an inputs and genetic algorithm (GA) has been used to manage and schedule residential load with the objective of cost, user discomfort, and peak-to-average ratio (PAR) reduction. Initially, RTP is used to reduce the energy consumption cost. However, to minimize the cost along with reducing the peaks, a combined pricing model, i.e., RTP with inclining block rate (IBR) has been used which incorporates user preferences and RES to optimally schedule load demand. User comfort and cost reduction are contradictory objectives, and difficult to maximize, simultaneously. Considering this trade-off, a combined pricing scheme is modelled in such a way that users are given priority to achieve their objective as per their requirements. To validate and analyze the performance of the proposed algorithm, we first propose mathematical models of all utilized loads, and then multi-objective optimization problem has been formulated. Furthermore, analytical results regarding the objective function and the associated constraints have also been provided to validate simulation results. Simulation results demonstrate a significant reduction in the energy cost along with the achievement of both grid stability in terms of reduced peak and high comfort..
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
53 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献