A Hybrid Algorithm for Forecasting Financial Time Series Data Based on DBSCAN and SVR

Author:

Huang Mengxing,Bao QiliORCID,Zhang Yu,Feng Wenlong

Abstract

Financial prediction is an important research field in financial data time series mining. There has always been a problem of clustering massive financial time series data. Conventional clustering algorithms are not practical for time series data because they are essentially designed for static data. This impracticality results in poor clustering accuracy in several financial forecasting models. In this paper, a new hybrid algorithm is proposed based on Optimization of Initial Points and Variable-Parameter Density-Based Spatial Clustering of Applications with Noise (OVDBCSAN) and support vector regression (SVR). At the initial point of optimization, ε and MinPts, which are global parameters in DBSCAN, mainly deal with datasets of different densities. According to different densities, appropriate parameters are selected for clustering through optimization. This algorithm can find a large number of similar classes and then establish regression prediction models. It was tested extensively using real-world time series datasets from Ping An Bank, the Shanghai Stock Exchange, and the Shenzhen Stock Exchange to evaluate accuracy. The evaluation showed that our approach has major potential in clustering massive financial time series data, therefore improving the accuracy of the prediction of stock prices and financial indexes.

Publisher

MDPI AG

Subject

Information Systems

Reference33 articles.

1. Modelling and Forecasting financial time series of “tick data”;Dablemont;Forecast. Financ. Mark.,2007

2. Analysis on a Relation Between Enterprise Profit and Financial State by Using Data Mining Techniques;Washio,2006

3. The present situation and future development trend of financial supervision in China;Yan;Cina Mark.,2010

4. Clustering of time series data—a survey

5. Financial Forecasting and Stochastic Modeling: Predicting the Impact of Business Decisions

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3