Smart Traffic Lights over Vehicular Named Data Networking

Author:

Al-qutwani Majed,Wang Xingwei

Abstract

The existing traffic light system fails to deal with the increase in vehicular traffic requirements due to fixed time programming. Traffic flow suffers from vehicle delay and congestion. A new networking technology called vehicular ad hoc networking (VANET) offers a novel solution for vehicular traffic management. Nowadays, vehicles communicate with each other (V2V), infrastructure (V2I), or roadside units (V2R) using IP-based networks. Nevertheless, IP-based networks demonstrate low performance with moving nodes as they depend on communication with static nodes. Currently, the research community is studying a new networking architecture based on content name called named data networking (NDN) to implement it in VANET. NDN is suitable for VANET as it sends/receives information based on content name, not content address. In this paper, we present one of VANET’s network applications over NDN, a smart traffic light system. Our system solves the traffic congestion issue as well as reducing the waiting time of vehicles in road intersections. This system replaces the current conventional system with virtual traffic lights (VTLs). Instead of installing traffic lights at every intersection, we utilize a road side unit (RSU) to act as the intersection controller. Instead of a light signal, the RSU collects the orders of vehicles that have arrived or will arrive at the intersection. After processing the orders according to the priority policy, the RSU sends an instant message for every vehicle to pass the intersection or wait for a while. The proposed system mimics a human policeman intersection controlling. This approach is suitable for autonomous vehicles as they only receive signals from the RSU instead of processing many images. We provide a map of future work directions for enhancing this solution to take into account pedestrian and parking issues.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3