Privacy-Preserving Secure Computation of Skyline Query in Distributed Multi-Party Databases

Author:

Qaosar MahboobORCID,Zaman Asif,Siddique Md.,Annisa ,Morimoto Yasuhiko

Abstract

Selecting representative objects from a large-scale database is an essential task to understand the database. A skyline query is one of the popular methods for selecting representative objects. It retrieves a set of non-dominated objects. In this paper, we consider a distributed algorithm for computing skyline, which is efficient enough to handle “big data”. We have noticed the importance of “big data” and want to use it. On the other hand, we must take care of its privacy. In conventional distributed algorithms for computing a skyline query, we must disclose the sensitive values of each object of a private database to another for comparison. Therefore, the privacy of the objects is not preserved. However, such disclosures of sensitive information in conventional distributed database systems are not allowed in the modern privacy-aware computing environment. Recently several privacy-preserving skyline computation frameworks have been introduced. However, most of them use computationally expensive secure comparison protocol for comparing homomorphically encrypted data. In this work, we propose a novel and efficient approach for computing the skyline in a secure multi-party computing environment without disclosing the individual attributes’ value of the objects. We use a secure multi-party sorting protocol that uses the homomorphic encryption in the semi-honest adversary model for transforming each attribute value of the objects without changing their order on each attribute. To compute skyline we use the order of the objects on each attribute for comparing the dominance relationship among the objects. The security analysis confirms that the proposed framework can achieve multi-party skyline computation without leaking the sensitive attribute value to others. Besides that, our experimental results also validate the effectiveness and scalability of the proposed privacy-preserving skyline computation framework.

Publisher

MDPI AG

Subject

Information Systems

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3