Author:
Hirano Masanori,Sakaji Hiroki,Kimura Shoko,Izumi Kiyoshi,Matsushima Hiroyasu,Nagao Shintaro,Kato Atsuo
Abstract
We propose an extended scheme for selecting related stocks for themed mutual funds. This scheme was designed to support fund managers who are building themed mutual funds. In our preliminary experiments, building a themed mutual fund was found to be quite difficult. Our scheme is a type of natural language processing method and based on words extracted according to their similarity to a theme using word2vec and our unique similarity based on co-occurrence in company information. We used data including investor relations and official websites as company information data. We also conducted several other experiments, including hyperparameter tuning, in our scheme. The scheme achieved a 172% higher F1 score and 21% higher accuracy than a standard method. Our research also showed the possibility that official websites are not necessary for our scheme, contrary to our preliminary experiments for assessing data collaboration.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献