Cyclostationary Analysis towards Fault Diagnosis of Rotating Machinery

Author:

Tang ShengnanORCID,Yuan Shouqi,Zhu YongORCID

Abstract

In the light of the significance of the rotating machinery and the possible severe losses resulted from its unexpected defects, it is vital and meaningful to exploit the effective and feasible diagnostic methods of its faults. Among them, the emphasis of the analysis approaches for fault type and severity is on the extraction of useful components in the fault features. On account of the common cyclostationarity of vibration signal under faulty states, fault diagnosis methods based on cyclostationary analysis play an essential role in the rotatory machine. Based on it, the fundamental definition and classification of cyclostationarity are introduced briefly. The mathematical principles of the essential cyclic spectral analysis are outlined. The significant applications of cyclostationary theory are highlighted in the fault diagnosis of the main rotating machinery, involving bearing, gear, and pump. Finally, the widely-used methods on the basis of cyclostationary theory are concluded, and the potential research directions are prospected.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

China Postdoctoral Science Foundation

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. FaultBit: Generic and Efficient Wireless Fault Detection Using the Internet of Things;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2024

2. A composite learning approach for multiple fault diagnosis in gears;Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability;2022-11-05

3. Development of a ship classification method based on Convolutional neural network and Cyclostationarity Analysis;Mechanical Systems and Signal Processing;2022-05

4. Fault Diagnosis in Industries: How to Improve the Health Assessment of Rotating Machinery;Sustainable Design and Manufacturing;2021-09-18

5. VDSM: Unsupervised Video Disentanglement with State-Space Modeling and Deep Mixtures of Experts;2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR);2021-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3