A Chaotic Search-Based Hybrid Optimization Technique for Automatic Load Frequency Control of a Renewable Energy Integrated Power System

Author:

Sundararaju Nandakumar,Vinayagam ArangarajanORCID,Veerasamy VeerapandiyanORCID,Subramaniam GunasekaranORCID

Abstract

In this work, a chaotic search-based hybrid Sperm Swarm Optimized-Gravitational Search Algorithm (CSSO-GSA) is proposed for automatic load frequency control (ALFC) of a hybrid power system (HPS). The HPS model is developed using multiple power sources (thermal, bio-fuel, and renewable energy (RE)) that generate power to balance the system’s demand. To regulate the frequency of the system, the control parameters of the proportional-integral-derivative (PID) controller for ALFC are obtained by minimizing the integral time absolute error of HPS. The effectiveness of the proposed technique is verified with various combinations of power sources (all sources, thermal with bio-fuel, and thermal with RE) connected into the system. Further, the robustness of the proposed technique is investigated by performing a sensitivity analysis considering load variation and weather intermittency of RE sources in real-time. However, the type of RE source does not have any severe impact on the controller but the uncertainties present in RE power generation required a robust controller. In addition, the effectiveness of the proposed technique is validated with comparative and stability analysis. The results show that the proposed CSSO-GSA strategy outperforms the SSO, GSA, and hybrid SSO-GSA methods in terms of steady-state and transient performance indices. According to the results of frequency control optimization, the main performance indices such as settling time (ST) and integral time absolute error (ITAE) are significantly improved by 60.204% and 40.055% in area 1 and 57.856% and 39.820% in area 2, respectively, with the proposed CSSO-GSA control strategy compared to other existing control methods.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3