Spatio-Temporal Evolution of Key Areas of Territorial Ecological Restoration in Resource-Exhausted Cities: A Case Study of Jiawang District, China

Author:

Wang Fengyu1,Tong Shuai2ORCID,Chu Yun1,Liu Tianlong1,Ji Xiang3

Affiliation:

1. School of Architecture and Design, China University of Mining and Technology, Xuzhou 221116, China

2. School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China

3. Jiangsu Collaborative Innovation Center for Building Energy Saving and Construction Technology, Jiangsu Vocational Institute of Architectural Technology, Xuzhou 221000, China

Abstract

Resource-exhausted cities usually face problems of environmental degradation, landscape fragmentation, and impeded ecological mobility. By clarifying the spatial heterogeneity of ecological restoration needs, efficient and coordinated ecological protection and restoration can be carried out. This study selected Jiawang District, a typical resource-exhausted city, and constructed an ecological security evaluation framework to determine the ecological source area from the three aspects of ecosystem service importance, ecological sensitivity, and landscape stability. The resistance surface was corrected with ecological sensitivity evaluation data, and ecological corridors and ecological nodes were identified using circuit theory. Finally, it explored the spatial and temporal evolution of the key areas of territorial ecological restoration in Jiawang District. This study indicates that: (1) In 2000, 2010, and 2020, the ecological source areas were 123.59 km2, 116.18 km2, and 125.25 km2, and the corresponding numbers of ecological corridors were 53, 51, and 49. The total lengths of the ecological corridors were 129.25 km, 118.57 km, and 112.25 km, mainly distributed in the northern and central areas of the study area. (2) The study area contained 17, 13, and 19 ecological pinch points in 2000, 2010, and 2020, respectively, 16, 20, and 15 ecological obstacle points, and 8, 24, and 33 ecological fracture points, respectively. Targeted rehabilitation of these key areas can significantly improve ecological connectivity. (3) The key area of territorial ecological restoration in 2020 was composed of 125.25 km2 ecological source area, 8.77 km2 of ecological pinch point, 12.70 km2 of ecological obstacle point, and 33 ecological fracture points. According to the present situation of land use, protection strategies are put forward.

Funder

National Key Research and Development Program of China

Major Research Fund Project of Jiangsu Building Energy Conservation and Construction Technology Collaborative Innovation Center

Graduate Innovation Program of China University of Mining and Technology

Postgraduate Research and Practice Innovation Program of Jiangsu Province

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3