Spatio-Temporal Variations in Ecological Quality and Its Response to Topography and Road Network Based on GEE: Taking the Minjiang River Basin as a Case

Author:

Zuo Xueman1,Li Jiazheng1,Zhang Ludan1,Wu Zhilong1,Lin Sen1,Hu Xisheng1

Affiliation:

1. College of Transportation and Civil Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China

Abstract

Urbanization has rapidly increased, leading to a wide range of significant disruptions to the global ecosystem. Road construction has emerged as the primary catalyst for such ecological degradation. As a result, it is imperative to develop efficient technological approaches for quantifying and tracking alterations in the ecological environment. Additionally, it is crucial to delve deeper into the spatial correlation between the quality of the ecosystem and the urban road network. This is of crucial importance in promoting sustainable development within the region. In this study, the research area selected was the Minjiang River Basin (MRB). We made optimal use of the Google Earth Engine (GEE) cloud platform to create a long-term series of remote sensing ecological index (RSEI) data in order to assess the quality of the ecological environment in the area. Additionally, we integrated digital elevation data (DEM) and OpenStreetMap (OSM) road network data to investigate the response mechanisms of RSEI with regard to elevation, slope, and the road network. The findings were as follows: (1) There were two distinct phases observed in the average value of RSEI: a slow-rising phase (2000–2010) with a growth rate of 1.09% and a rapidly rising phase (2010–2020) with a growth rate of 5.36%; the overall 20-year variation range fell between 0.575 and 0.808. (2) During the period of 2000 to 2010, approximately 41.6% of the area exhibited enhanced ecological quality, whereas 17.9% experienced degradation. Subsequently, from 2010 to 2020, the proportion of the region with improved ecological quality rose to 54.0%, while the percentage of degraded areas declined to 3.8%. (3) With increasing elevation and slope, the average value of RSEI initially rose and then declined. Specifically, the regions with the highest ecological quality were found in the areas with elevations ranging from 1200 to 1500 m and slopes ranging from 40 to 50°. In contrast, areas with an elevation below 300 meters or a slope of less than 10° had the poorest ecological quality. (4) The RSEI values exhibited a rapid ascent within the 1200 m buffer along the road network, while beyond this threshold, the increase in RSEI values became more subdued. (5) The bivariate analysis found a negative correlation between road network kernel density estimation (KDE) and RSEI, which grew stronger with larger scales. Spatial distribution patterns primarily comprised High–Low and Low–High clusters, in addition to non-significant clusters. The southeastern region contained concentrated High–Low clusters which covered approximately 10% of the study area, while Low–High clusters accounted for around 20% and were predominantly found in the western region. Analyzing the annual changes from 2000 to 2020, the southeastern region experienced a decrease in the number of High–Low clusters and an increase in the number of High–High clusters, whereas the northwestern region showed a decline in the number of Low–High clusters and an increase in the number of non-significant clusters. This study addresses a research gap by investigating the spatial correlation between road distribution and RSEI, which is vital for comprehending the interplay between human activities and ecosystem services within the basin system.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Fujian Province

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3