Impact of Land Cover Changes on Soil Type Mapping in Plain Areas: Evidence from Tongzhou District of Beijing, China

Author:

Wu Xiangyuan1,Wu Kening12ORCID,Zhao Huafu12,Hao Shiheng1,Zhou Zhenyu1

Affiliation:

1. School of Land Science and Technology, China University of Geosciences, Beijing 100083, China

2. Key Laboratory of Land Consolidation and Rehabilitation, Ministry of Natural Resources, Beijing 100035, China

Abstract

The flat terrain in the plain areas of Beijing, China makes the land easily accessible for cultivation and farming, providing vast opportunities for agricultural development. Meanwhile, these areas are also crucial for urban construction and economic growth. Soil type mapping plays a key role in understanding soil characteristics and guiding land management practices. However, accurately mapping soil types in plain regions can be challenging due to their low spatial variability and diverse land use types. Although land cover changes due to phenomena such as urbanization, agricultural expansion, and conversion of natural vegetation can significantly affect soil properties and distribution patterns, their impacts on soil type mapping remain unclear. This study investigated the impacts of land cover changes in plain areas on the accuracy of soil type mapping, hoping to provide effective assistance for soil type mapping in plain areas by analyzing their coupling relationship. Focusing on the 20 year land cover changes in Tongzhou District, this study utilizes a unified approach that combines expert knowledge, mixed sampling methods, and RF mapping techniques, while incorporating environmental covariates that have minimal period influence and synergistically using NDVI and land cover data from the same year. Transition matrices are used to reveal land cover changes, confusion matrices, and their derived indicators to analyze changes in soil type mapping accuracy, and coupling analysis is conducted between soil type change areas and land cover change areas. The results show that Tongzhou District has experienced rapid development over the past 20 years, with the area of construction land nearly doubling. Additionally, 29% of arable land has been converted into construction land, resulting in an increase in the accuracy of the soil map from 58.99% to 66.91% over the 20 year period. The soil type change area during this period accounts for 16.5% of the total area, with 51.9% of the changed areas overlapping with land cover change areas. These overlapping regions are predominantly influenced by human activities. In terms of cultivated land types in the study area, the quantity of arable land has decreased by approximately 29% over 20 years, while the proportion of Sandy loam calcareous fluvo-aquic soil and Light loam calcareous fluvo-aquic soil, which constitute nearly half of the soil type, has increased. These data demonstrate the coupling relationship between land cover changes and soil type variations. It is evident that improving the extent of land use in plain areas enhances the credibility of soil type mapping. Meanwhile, human activities impact land cover, which, in turn, affects and reflects changes in the soil type.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3