A Fast Multi-Scale Generative Adversarial Network for Image Compressed Sensing

Author:

Li WenzongORCID,Zhu Aichun,Xu Yonggang,Yin Hongsheng,Hua Gang

Abstract

Recently, deep neural network-based image compressed sensing methods have achieved impressive success in reconstruction quality. However, these methods (1) have limitations in sampling pattern and (2) usually have the disadvantage of high computational complexity. To this end, a fast multi-scale generative adversarial network (FMSGAN) is implemented in this paper. Specifically, (1) an effective multi-scale sampling structure is proposed. It contains four different kernels with varying sizes so that decompose, and sample images effectively, which is capable of capturing different levels of spatial features at multiple scales. (2) An efficient lightweight multi-scale residual structure for deep image reconstruction is proposed to balance receptive field size and computational complexity. The key idea is to apply smaller convolution kernel sizes in the multi-scale residual structure to reduce the number of operations while maintaining the receptive field. Meanwhile, the channel attention structure is employed for enriching useful information. Moreover, perceptual loss is combined with MSE loss and adversarial loss as the optimization function to recover a finer image. Numerous experiments show that our FMSGAN achieves state-of-the-art image reconstruction quality with low computational complexity.

Funder

High reliable compression coding model and method of distributed monitoring information source for coal mine Internet of things

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3