Development of a Direct Non-Puncture Device for Measuring Portal Venous Pressure during Liver Transplantation—A Swine Model

Author:

Ho Kung-Chen123,Huang Tun-Sung23,Lin Jiunn-Chang2345,Chiang Huihua Kenny1ORCID

Affiliation:

1. Department of Biomedical Engineering, National Yang-Ming Chiao-Tung University, Taipei 112, Taiwan

2. Division of General Surgery, Department of Surgery, Mackay Memorial Hospital, Taipei 104, Taiwan

3. Liver Medical Center, MacKay Memorial Hospital, Taipei 104, Taiwan

4. Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan

5. MacKay Junior College of Medicine, Nursing, and Management, New Taipei City 11260, Taiwan

Abstract

Portal hypertension-related complications pose a significant risk for liver failure post-transplantation. Thus, accurate monitoring of intraoperative portal venous pressure (PVP) is crucial. However, current PVP monitoring techniques requiring direct percutaneous puncture carry the risk of graft damage. In this study, we present an innovative non-puncture PVP monitoring device (PVPMD) using a 3D-printed prototype. PVPMD design is inspired by the sphygmomanometer principle, and strategically encompasses the portal vein and enables precise PVP measurement through blood flow ultrasonography after temporary occlusion. By a series of mini-pig experiments, the prototype PVPMD demonstrated a strong correlation with invasive catheter measurements in the main trunk of the portal vein (rs = 0.923, p = 0.000). There was a significant repeatability and reproducibility between the prototype PVPMD- and invasive catheter-measured PVP. This indicates that the PVPMD holds immense potential for direct application in liver transplantation and surgery. Moreover, it has the potential to replace catheter-based central venous pressure (CVP) measurements, thereby mitigating catheter-related complications during many surgeries. In conclusion, our innovative device represents a significant advancement in PVP monitoring during liver transplantation, with comprehensive validation from principle exploration to successful animal experiments. We anticipate that this groundbreaking PVPMD will attract the attention of researchers and clinicians, propelling the noninvasive measurement of PVP or other venous/arterial pressures into a new era of clinical practice.

Funder

National Yang Ming Chiao Tung University

The Biomedical Development Centre, Mackay Memorial Hospital

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3