Design of a Facile Antifouling Sensor Based on the Synergy between an Antibody and Phase-Transited BSA

Author:

Wang Siqi1,Dong Xinru2,Li Jialu2,Liu Jialei2,Ruan Yifei2,Xia Yinqiang2

Affiliation:

1. College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, China

2. College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China

Abstract

Nonspecific adsorption has always been a critical challenge for sensor detection; thus, an efficient and facile approach for fabricating antifouling sensors is highly desirable. Here, we developed an antifouling coating on sensor surfaces, conveniently made with a simple drip of phase-transited BSA (PTB) followed by a modification with a peanut allergen antibody, which unexpectedly provides synergistic antifouling properties in sensors. Atomic force microscopy and scanning electron microscopy were used to evaluate the surface evenness. Optimizations in terms of PTB modification time and concentrations were performed using surface plasmon resonance by measuring protein resistance capabilities. Compared to bare Au surfaces, the PTB-modified surfaces exhibited low adsorption against BSA (<10 ng/cm2) and good resistance against lysozyme (Lyz). After immobilizing antibodies, the antifouling performance of the sensor coatings had an obvious enhancement, with almost no BSA adsorption and low lysozyme adsorption. The target recognition was also analyzed to verify the good sensing performance of the antifouling sensor. This understanding of antibody synergy provides suggestions for the development of antifouling sensors.

Funder

National Natural Science Foundation of China

Key Research and Development Program of Shaanxi Province

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3