Transport Mechanism of Paracetamol (Acetaminophen) in Polyurethane Nanocomposite Hydrogel Patches—Cloisite® 30B Influence on the Drug Release and Swelling Processes

Author:

Strankowska Justyna1ORCID,Grzywińska Małgorzata2ORCID,Łęgowska Ewelina3,Józefowicz Marek1ORCID,Strankowski Michał4ORCID

Affiliation:

1. Institute of Experimental Physics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, Wita Stwosza 57, 80-308 Gdańsk, Poland

2. Neuroinformatics and Artificial Intelligence Lab, Department of Neurophysiology, Neuropsychology and Neuroinformatics, Medical University of Gdańsk, Tuwima 15, 80-210 Gdańsk, Poland

3. Academia Copernicana Interdisciplinary Doctoral School, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland

4. Department of Polymer Technology, Chemical Faculty, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland

Abstract

This article describes the swelling and release mechanisms of paracetamol in polyurethane nanocomposite hydrogels containing Cloisite® 30B (organically modified montmorillonite). The transport mechanism, swelling and release processes of the active substance in nanocomposite matrix were studied using gravimetric and UV-Vis spectroscopic methods. Swelling and release processes depend on the amount of clay nanoparticles in these systems and the degree of crosslinking of PU/PEG/Cloisite® 30B hydrogel nanocomposites. The presence of clay causes, on the one hand, a reduction in free volumes in the polymer matrices, making the swelling process less effective; on the other hand, the high swelling and self-aggregation behavior of Cloisite® 30B and the interactions of paracetamol both with it and with the matrix, cause a change in the transport mechanism from anomalous diffusion to Fickian-like diffusion. A more insightful interpretation of the swelling and release profiles of the active substance was proposed, taking into account the “double swelling” process, barrier effect, and aggregation of clay. It was also proven that in the case of modification of polymer matrices with nanoparticles, the appropriate selection of their concentration is crucial, due to the potential possibility of controlling the swelling and release processes in drug delivery patches.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3