Effects of Anionic Emulsifiers and Emulsified Asphalt on Hydration and Microstructure of Cement

Author:

Zhang Panpan12,Hou Yitong2,Niu Kaimin12,Tian Bo12,Wang Hao23

Affiliation:

1. Research Institute of Highway, Ministry of Transport, 8 Xitucheng Road, Haidian District, Beijing 100088, China

2. School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China

3. CCCC First Highway Consultants Co., Ltd., Xi’an 710075, China

Abstract

Cement-emulsified asphalt (CEA) has been widely used in slab ballastless track and asphalt pavement cold recycling projects because of its high stiffness and toughness. In CEA material, emulsifiers and asphalt affect the cement’s hydration process and microstructure. Thus, to further investigate the effects of anionic emulsifiers (AEs) and anionic emulsified asphalt (AEA) with different demulsification rates on the hydration process and microstructure of cement, two types of AE (rapid-setting and slow-setting) and their corresponding AEA were used to prepare modified cement pastes. First, it was confirmed that the AEs and AEA delayed cement hydration by measuring the setting time, X-ray diffraction (XRD) patterns, and electrical resistivity of the cement paste. Then, the microstructure of the cement paste was determined with mercury intrusion porosimetry (MIP) and a scanning electron microscope (SEM), and it was found that AEs and AEA have varying degrees of inhibitory effects on the formation of the cement paste microstructure. Finally, based on the energy dispersive spectrometer (EDS) element content of the cement paste and Fourier transform infrared spectroscopy (FTIR) on the two AEs, the inhibition mechanism of AE and AEA with different demulsifier rates on the cement hydration process was analyzed. The experimental results showed that both AEs and AEA delayed the hydration process of cement to varying degrees and altered the microstructure of cement, and slow setting anionic emulsified asphalt (SAEA) had the greatest impact on the hydration process and microstructure of cement. Compared to pure cement paste, the initial setting time of cement paste mixed with SAEA was delayed by 73.9%, and the final setting time was delayed by 66.7%. After adding SAEA, the most probable aperture of the cement paste increased from 62.50 nm to 71.19 nm after one day of hydration. Due to the fact that there were more carboxyl groups with negative charges, more -COO− was adsorbed onto the surface of cement particles in the slow-cracking anionic emulsifier (SAE); compared with the rapid-setting anionic emulsifier (RAE) and the rapid-setting anionic emulsified asphalt (RAEA), the SAE and the SAEA had a stronger delaying effect on the hydration reaction of cement.

Funder

the basic scientific research of the central institute

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3