Microstructure and Wear Behavior of Heat-Treated Mg-1Zn-1Ca Alloy for Biomedical Applications

Author:

Pulido-González Nuria1,García-Rodríguez Sonia1,Torres Belén1ORCID,Rams Joaquin1ORCID

Affiliation:

1. Departamento de Matemática Aplicada, Ciencia e Ingeniería de Materiales y Tecnología Electrónica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, C/Tulipán s/n, Móstoles, 28933 Madrid, Spain

Abstract

The microstructure and wear properties of a Mg-1wt.% Zn-1wt.% Ca (ZX11) alloy with different heat treatments have been investigated. The ZX11 alloy was tested in the as-cast state and after different heat treatment conditions: solution-treated (at 450 °C for 24 h), peak-aged (solution-treated + aged at 180 °C for 3 h), and over-aged (solution-treated + aged at 180 °C for 24 h). The microstructure of the as-cast sample showed a continuous intermetallic phase at the grain boundaries, while the heat-treated samples exhibited discrete precipitated particles within the grains. To evaluate the wear behavior, the samples were tested using a pin-on-disc configuration, where the wear rates and friction coefficients were measured at different loads and sliding speeds. An AZ31 magnesium alloy was used as the counterbody. The worn surfaces and the wear debris were studied to identify the main wear mechanisms corresponding to each test condition. The results indicated the presence of abrasion, oxidation, and adhesive wear mechanisms in all testing conditions. In the as-cast state, delamination and plastic deformation were the dominant wear mechanisms, while they were less relevant in the heat-treated conditions. The peak-aged samples exhibited the lowest wear rates, suggesting that modifying the distribution of intermetallic precipitates contributed to enhancing the wear resistance of the alloy.

Funder

Agencia Estatal de Investigación

Comunidad de Madrid

Ministerio de Educación, Cultura y Deporte

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3