Abstract
This paper presents an investigation of the modification of natural oxazines to traditional bisphenol A benzoxazines. Eugenol was reacted with furfurylamine to synthesize a new type of benzoxazine (eugenol–furfurylamine benzoxazine), with a yield of 77.65%; and another new type of benzoxazine (bisphenol A–furfurylamine benzoxazine) was generated from bisphenol A and furfurylamine, with the highest yield of 93.78%. In order to analyze and study the target molecules, IR (infrared radiation) spectroscopy, GPC (gel-permeation chromatograph), mass spectrometry, 1H-NMR (nuclear magnetic resonance), DSC (differential scanning calorimetry), and DMA (dynamic mechanical analysis) tests were conducted. Eugenol-furfurylamine benzoxazine and conventional bisphenol A-aniline benzoxazine (BZ) composite was also analyzed and cured at different mass ratios of 2:98, 5:95, 10:90, 20:80, and 40:60. When the content of eugenol furfurylamine in the blend reached 5%, the strength of the composite was greatly enhanced, while the strength decreased with the increase in eugenol furfurylamine oxazine content. Moreover, octamaleimide phenyl POSS (OMPS, polyhedral oligomeric silsesquioxane) and bisphenol A furamine benzoxazine were mixed at different molar ratios of 1:16, 1:8, 1:4, 1:2, and 1:1. The curing temperature sharply decreased with the increase in OMPS content. When the molar ratio reached 1:1, the curing temperature decreased from 248 to 175℃. A further advantage of using eugenol and furfurylamine is that they are renewable resources, which is important in terms of utilizing resources effectively and developing environmentally friendly products.
Subject
General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献