Dispersion Mechanism of Styrene–Butadiene Rubber Powder Modified by Itaconic Acid and Its Toughening Effect on Oil Well Cement

Author:

Xing Yubing,Hu Miaomiao,Cao Chengzhang,Yu Jiayu,Zhao Jiaqi,Zheng Hongbing,Guo Jintang

Abstract

Styrene–butadiene rubber (SBR) has been extensively applied to enhance the toughness of hardened cement. The instability of existing liquid latex leads to difficulties in storage and transportation, and even performance regression. Thus, the well-dispersed carboxylated butylbenzene (SISBR) latex powders were fabricated through the seed emulsion polymerization of liquid polybutadiene (LPB), styrene (St), itaconic acid (IA), and sodium p-styrenesulfonate (SSS) to overcome the difficulties. The dispersion performance of latex powders with various IA amounts was quantitatively evaluated using particle size distribution, zeta potential, and ultraviolet–visible spectrophotometry. Results showed that the carboxylic ionic (COO-) from IA enhanced the dispersing abilities of SISBR latex powders, which ensured the uniform distribution in water. Based on this, the influence of latex powder on cement was assessed mainly by fluidity, isothermal heat flow calorimetry, X-ray diffraction (XRD), and triaxial mechanical testing. Results showed the fluidity and dispersion performance of cement were improved with more IA in latex, while the hydration of cement was retarded due to excessive adsorption of carboxyl (-COOH) groups in IA. Triaxial mechanical testing showed that cement with SISBR-3 (latex containing 3% IA) exhibited the minimal elastic modulus of 3.16 GPa, which was lower than that of plain cement (8.34 GPa).

Funder

State key laboratory of Heavy oil Processing

China Postdoctoral Science Foundation

National Nature Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Reference44 articles.

1. The integrity of oil and gas wells;Proc. Natl. Acad. Sci. USA,2014

2. A theoretical evaluation method for mechanical sealing integrity of cementing sheath;Appl. Math. Model.,2020

3. Effect of paste volume on fresh and hardened properties of concrete;Constr. Build. Mater.,2019

4. Development of extrudable high strength fiber reinforced concrete incorporating nano calcium carbonate;Addit. Manuf.,2021

5. Study on the interaction between anionic and cationic latex particles and Portland cement;Colloid Surf. A-Physicochem. Eng. Asp.,2008

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3