Design of Digital-Twin Human-Machine Interface Sensor with Intelligent Finger Gesture Recognition

Author:

Mo Dong-Han1ORCID,Tien Chuen-Lin12ORCID,Yeh Yu-Ling3ORCID,Guo Yi-Ru4,Lin Chern-Sheng3ORCID,Chen Chih-Chin5,Chang Che-Ming1

Affiliation:

1. Ph.D. Program of Electrical and Communications Engineering, Feng Chia University, Taichung 40724, Taiwan

2. Department of Electrical Engineering, Feng Chia University, Taichung 40724, Taiwan

3. Department of Automatic Control Engineering, Feng Chia University, Taichung 40724, Taiwan

4. Master’s Program of Department of Computer Science and Engineering, National Chung Hsing University, Taichung 40227, Taiwan

5. Master’s Program of Biomedical Informatics and Biomedical Engineering, Feng Chia University, Taichung 40724, Taiwan

Abstract

In this study, the design of a Digital-twin human-machine interface sensor (DT-HMIS) is proposed. This is a digital-twin sensor (DT-Sensor) that can meet the demands of human-machine automation collaboration in Industry 5.0. The DT-HMIS allows users/patients to add, modify, delete, query, and restore their previously memorized DT finger gesture mapping model and programmable logic controller (PLC) logic program, enabling the operation or access of the programmable controller input-output (I/O) interface and achieving the extended limb collaboration capability of users/patients. The system has two main functions: the first is gesture-encoded virtual manipulation, which indirectly accesses the PLC through the DT mapping model to complete control of electronic peripherals for extension-limbs ability by executing logic control program instructions. The second is gesture-based virtual manipulation to help non-verbal individuals create special verbal sentences through gesture commands to improve their expression ability. The design method uses primitive image processing and eight-way dual-bit signal processing algorithms to capture the movement of human finger gestures and convert them into digital signals. The system service maps control instructions by observing the digital signals of the DT-HMIS and drives motion control through mechatronics integration or speech synthesis feedback to express the operation requirements of inconvenient work or complex handheld physical tools. Based on the human-machine interface sensor of DT computer vision, it can reflect the user’s command status without the need for additional wearable devices and promote interaction with the virtual world. When used for patients, the system ensures that the user’s virtual control is mapped to physical device control, providing the convenience of independent operation while reducing caregiver fatigue. This study shows that the recognition accuracy can reach 99%, demonstrating practicality and application prospects. In future applications, users/patients can interact virtually with other peripheral devices through the DT-HMIS to meet their own interaction needs and promote industry progress.

Funder

Ministry of Science and Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3