Vision-Based Estimation of Force Balance of Near-Suspended Melt Pool for Drooping and Collapsing Prediction

Author:

Luo Longxi1ORCID,Qian Enze1,Lu Tao1,Pan Jingren1,Liu Minghao1,Liu Changmeng1,Guo Yueling1ORCID,Bi Luzheng1

Affiliation:

1. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100080, China

Abstract

Wire-arc additive manufacturing (WAAM) is favored by the industry for its high material utilization rate and low cost. However, wire-arc additive manufacturing of lattice structures faces problems with forming accuracy such as broken rod and surface morphology defects, which cannot meet the industrial demand. This article innovatively combines the melt pool stress theory with visual perception algorithms to visually study the force balance of the near-suspended melt pool to predict the state of the melt pool. First, the method for melt pool segmentation was studied. The results show that the optimized U-net achieved high accuracy in melt pool segmentation tasks, with accuracies of 98.18%, MIOU 96.64%, and Recall 98.34%. In addition, a method for estimating melt pool force balance and predicting normal, sagging, and collapsing states of the melt pool is proposed. By combining experimental testing with computer vision technology, an analysis of the force balance of the melt pool during the inclined rod forming process was conducted, showing a prediction rate as high as 90% for the testing set. By using this method, monitoring and predicting the state of the melt pool is achieved, preemptively avoiding issues of broken rods during the printing process. This approach can effectively assist in adjusting process parameters and improving welding quality. The application of this method will further promote the development of intelligent unmanned WAAM and provide some references for the development of artificial intelligence monitoring systems in the manufacturing field.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3