Nitroethanol in Comparison with Monensin Exhibits Greater Feed Efficiency Through Inhibiting Rumen Methanogenesis More Efficiently and Persistently in Feedlotting Lambs

Author:

Zhang Zhen-Wei,Wang Yan-Lu,Chen Yong-Yan,Wang Wei-Kang,Zhang Luo-Tong,Luo Hai-Ling,Yang Hong-JianORCID

Abstract

This study was conducted to determine the dietary supplemental effects of nitroethanol (NEOH) in comparison with monensin on growth performance and estimated methane (CH4) production in feedlotting lambs. Sixty male, small-tailed Chinese Han lambs were arranged at random into three dietary treatment groups: (1) a basal control diet (CTR), (2) the basal diet added with 40 mg/kg monensin (MON), (3) the basal diet added with 277 mg/kg nitroethanol (NEOH). During the 32-day lamb feeding, monensin and nitroethanol were added in period 1 (day 0–16) and then withdrawn in the subsequent period 2 (day 17–32) to determine their withdrawal effects. The average daily gain (ADG) and feed conversion rate in the whole period ranked: NEOH > MON > CTR (p < 0.01), suggesting that the dietary addition of NEOH in comparison with monensin presented a more lasting beneficial effect on feed efficiency. Methane emission was estimated with rumen VFA production and gross energy intake. Both monensin and NEOH addition in comparison with the control remarkably decreased CH4 emission estimate (24.0% vs. 26.4% decrease; p < 0.01) as well as CH4 emission per kg ADG (8.7% vs. 14.0% decrease; p < 0.01), but the NEOH group presented obvious lasting methanogenesis inhibition when they were withdrawn in period 2. Moreover, the in vitro methanogenic activity of rumen fluids was also decreased with monensin or NEOH addition (12.7% vs. 30.5% decrease; p < 0.01). In summary, the dietary addition of NEOH in comparison with monensin presented a greater promoting effect on growth performance in feedlotting lambs by inhibiting rumen methanogenesis more efficiently and persistently.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3