Transcriptome Analysis of Bursaphelenchus xylophilus Uncovers the Impact of Stenotrophomonas maltophilia on Nematode and Pine Wilt Disease

Author:

Xue Qi,Wu Xiao-QinORCID,Wu Fei,Ye Jian-Ren

Abstract

Stenotrophomonas maltophilia influences the reproduction, pathogenicity, and gene expression of aseptic Bursaphelenchus xylophilus after inoculation of aseptic Pinus massoniana. Pine wilt disease is a destructive pine forest disease caused by B. xylophilus, and its pathogenesis is unclear. The role of bacteria associated with B. xylophilus in pine wilt disease has attracted widespread attention. S. maltophilia is one of the most dominant bacteria in B. xylophilus, and its effect is ambiguous. This study aims to explore the role of S. maltophilia in pine wilt disease. The reproduction and virulence of aseptic B. xylophilus and B. xylophilus containing S. maltophilia were examined by inoculating aseptic P. massoniana seedlings. The gene expressions of two nematode treatments were identified by transcriptome sequencing. The reproduction and virulence of B. xylophilus containing S. maltophilia were stronger than that of aseptic nematodes. There were 4240 differentially expressed genes between aseptic B. xylophilus and B. xylophilus containing S. maltophilia after inoculation of aseptic P. massoniana, including 1147 upregulated genes and 2763 downregulated genes. These differentially expressed genes were significantly enriched in some immune-related gene ontology (GO) categories, such as membrane, transporter activity, metabolic processes, and many immune-related pathways, such as the wnt, rap1, PI3K-Akt, cAMP, cGMP-PKG, MAPK, ECM-receptor interaction, and calcium signaling pathways. The polyubiquitin-rich gene, leucine-rich repeat serine/threonine-protein kinase gene, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene, acetyl-CoA carboxylase gene, and heat shock protein genes were the key genes associated with immune resistance. Moreover, there were four cell wall hydrolase genes, thirty-six detoxification- and pathogenesis-related protein genes, one effector gene and ten cathepsin L-like cysteine proteinase genes that were differentially expressed. After inoculation of the host pine, S. maltophilia could affect the virulence and reproduction of B. xylophilus by regulating the expression of parasitic, immune, and pathogenicity genes of B. xylophilus.

Publisher

MDPI AG

Subject

Forestry

Reference73 articles.

1. Experiences with Bursaphelenchus xylophilus in Finland

2. History of pine wilt disease in Japan;Mamiya;J. Nematol.,1988

3. First finding of the pine wood nematode, Bursaphelenchus xylophilus (Steiner et Buhrer) Nickle and its insect vector in Korea;Yi;Res. Rep. For. Res. Inst. Seoul,1989

4. Genetic diversity of pine-parasitic nematodesBursaphelenchus xylophilusandBursaphelenchus mucronatusin China

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3