Compliance-Based Determination of Fatigue Design Curves for Elastomeric Adhesive Joints

Author:

Fernandes Pedro Henrique Evangelista12,Nagel Christof1,Wulf Andreas1,Beber Vinicius Carrillo1ORCID,Mayer Bernd12ORCID

Affiliation:

1. Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, 28359 Bremen, Germany

2. Faculty 4-Production Engineering, University of Bremen, 28359 Bremen, Germany

Abstract

A compliance-based method for the determination of fatigue design curves for elastomeric adhesive joints is developed and validated. Fatigue experiments are conducted on elastomeric adhesives (a polyurethane and a silane-modified polymer) under different stress ratios (R = 0.1/0.5/−1) and conditions (23 °C/50% r.h. and 40 °C/60% r.h.). The investigation focused on butt and thick adherent shear test joints. Fatigue tests are recorded with cameras to identify the stages of crack initiation and propagation. For each fatigue test, the stiffness and compliance per cycle are calculated until final failure. The proposed method identifies a transition point that distinguishes regions under stable and unstable compliance growth. Fatigue design curves are then built based on the transition point and on the number of cycles to reach different degrees of initial stiffness (90%, 80%, 70% and 60%). The failure ratio, i.e., the lifetime for reaching a given approach divided by the total lifetime, is introduced to evaluate the data in terms of average values and standard deviation. The results indicate that the proposed method can yield fatigue design curves with a high coefficient of determination (accuracy) and high failure ratio (avoiding over-conservative design). Moreover, the method is robust, as the failure ratio for different adhesives, stress ratios, conditions and geometries is highly consistent.

Funder

AiF within the framework of the programme for the promotion of Industrial Collective Research (IGF) of the Federal Ministry for Economic Affairs and Climate Action BMWK

CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) through the Science without Borders program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3