Finding the Age and Education Level of Bulgarian-Speaking Internet Users Using Keystroke Dynamics

Author:

Grunova Denitsa1,Tsimperidis Ioannis1ORCID

Affiliation:

1. MLV Research Group, Department of Computer Science, International Hellenic University, 65404 Kavala, Greece

Abstract

The rapid development of information and communication technologies and the widespread use of the Internet has made it imperative to implement advanced user authentication methods based on the analysis of behavioural biometric data. In contrast to traditional authentication techniques, such as the simple use of passwords, these new methods face the challenge of authenticating users at more complex levels, even after the initial verification. This is particularly important as it helps to address risks such as the possibility of forgery and the disclosure of personal information to unauthorised individuals. In this study, the use of keystroke dynamics has been chosen as a biometric, which is the way a user uses the keyboard. Specifically, a number of Bulgarian-speaking users have been recorded during their daily keyboard use, and then a system has been implemented which, with the help of machine learning models, recognises certain acquired or intrinsic characteristics in order to reveal part of their identity. The results show that users can be categorised using keystroke dynamics, in terms of the age group they belong to and in terms of their educational level, with high accuracy rates, which is a strong indication for the creation of applications to enhance user security and facilitate their use of Internet services.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference37 articles.

1. Performance Evaluation of an Anomaly-Detection Algorithm for Keystroke-Typing Based Insider Detection;He;Tsinghua Sci. Technol.,2018

2. The reliability of user authentication through keystroke dynamics;Douhou;Stat. Neerl.,2009

3. The present-day Bulgarian language Situation: Trends and prospects;Videnov;Int. J. Sociol. Lang.,1999

4. Keystroke Dynamics as a Biometric for Authentication;Monrose;Future Gener. Comput. Syst.,2000

5. Keyboard apparatus for personal identification;Spillane;IBM Tech. Discl. Bull.,1975

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3