Modeling Requirements for Collaborative Robotic Services

Author:

Zapata Oscar Stiven Morales12ORCID,Correa Yaney Gomez1ORCID,Yoshioka Leopoldo Rideki1ORCID,Silva Jose Reinaldo1ORCID

Affiliation:

1. College of Engineering, Universidade de São Paulo, São Paulo 05508-010, Brazil

2. Faculty of Science and Engineering, Universidad Autonoma de Manizales, Carrera 9a, 19-03, Manizales 170001, Colombia

Abstract

Collaborative robots have experienced low acceptance in applications, especially in industry. This fact has attracted the attention of researchers and practitioners, who point to different causes for this limited acceptance. One of the main reasons is the difficulty in converging on suitable methods for modeling collaborative interactions between robots and their surrounding context during the requirements phase. These interactions must be elicited and modeled during the requirements stage to maximize value creation through collaboration. Formal verification is necessary, taking into account the risks of human-robot interaction. However, such modeling is often absent in collaborative robot design, and choosing an appropriate approach remains an open problem. This paper addresses this problem using a model-based requirements cycle where the value creation is detached to provide direct analysis, possible optimization, and formal verification. The general process integrates with the general model-based requirements engineering of the remaining system. This service system approach relies on a goal-oriented requirements approach, and specific algorithms were developed to transfer goal-oriented diagrams into Petri Nets—to provide formal process verification. A case study illustrates the application of the proposed method on a collaborative robot used in a university hospital environment.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3