WB Score: A Novel Methodology for Visual Classifier Selection in Increasingly Noisy Datasets

Author:

Billa Wagner S.12ORCID,Negri Rogério G.3ORCID,Santos Leonardo B. L.12ORCID

Affiliation:

1. Center for Monitoring and Early Warning of Natural Disasters (CEMADEN), São José dos Campos 12630-000, Brazil

2. National Institute for Space Research (INPE), São José dos Campos 12227-010, Brazil

3. Science and Technology Institute (ICT), São Paulo State University (UNESP), São José dos Campos 12224-300, Brazil

Abstract

This article addresses the challenges of selecting robust classifiers with increasing noise levels in real-world scenarios. We propose the WB Score methodology, which enables the identification of reliable classifiers for deployment in noisy environments. The methodology addresses four significant challenges that are commonly encountered: (i) Ensuring classifiers possess robustness to noise; (ii) Overcoming the difficulty of obtaining representative data that captures real-world noise; (iii) Addressing the complexity of detecting noise, making it challenging to differentiate it from natural variations in the data; and (iv) Meeting the requirement for classifiers capable of efficiently handling noise, allowing prompt responses for decision-making. WB Score provides a comprehensive approach for classifier assessment and selection to address these challenges. We analyze five classic datasets and one customized flooding dataset in São Paulo. The results demonstrate the practical effect of using the WB Score methodology is the enhanced ability to select robust classifiers for datasets in noisy real-world scenarios. Compared with similar techniques, the improvement centers around providing a visual and intuitive output, enhancing the understanding of classifier resilience against noise, and streamlining the decision-making process.

Funder

São Paulo Research Foundation

National Council for Scientific and Technological Development

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3