Visualization of Movement and Expansion of Coal Reaction Zone by Acoustic Emission Monitoring in Underground Coal Gasification System

Author:

Iriguchi Rika1,Ishii Yuma1,Hamanaka Akihiro1ORCID,Su Faqiang2,Itakura Ken-ichi3,Kodama Jun-ichi4,Sasaoka Takashi1,Shimada Hideki1ORCID,Deguchi Gota5

Affiliation:

1. Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, Fukuoka 819-0395, Japan

2. School of Energy Science and Engineering, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo 454003, China

3. Endowed Research Laboratory of Un-Mined Mineral Resources and Energy Engineering, Muroran Institute of Technology, Muroran 050-8585, Japan

4. Division of Sustainable Resources Engineering, Hokkaido University, Sapporo 060-0808, Japan

5. Mineral Resources Innovation Networks, Non-Profit Organization (NPO), Sapporo 007-0847, Japan

Abstract

Underground coal gasification (UCG) is the process of directly recovering energy as combustible gases such as hydrogen and carbon monoxide by combusting unmined coal resources in situ. The UCG process is an invisible phenomenon, in which fracturing activity at high temperature (>1000 °C) in coal seams expands the gasification zone and increases the combustible components of the product gas. However, excessive expansion of the gasification zone may cause environmental problems such as gas leakage, deformation of the surrounding ground, and groundwater pollution. Therefore, visualization of the gasification zone of UCG is required for both improving gasification efficiency and developing UCG systems with low environmental impact. In this study, the large-scale model UCG experiments conducted on a laboratory scale (size: 625 mm × 650 mm × 2792 mm (H × W × L)) were carried out to discuss the visualization of the gasification reaction zone of coal in UCG by Acoustic Emission (AE) technique with uniaxial and triaxial acceleration transducers. As the results of temperature monitoring and AE source location analysis show, AE sources are located near the high-temperature zone (>1000 °C). In addition, the located AE sources move and expand with the movement and expansion of the high-temperature zone. AE measurement can be a useful technique for monitoring the progress of the UCG reaction zone. AE measurement with triaxial sensors is also useful to predict a high-temperature zone though the measurable range, which has to be considered.

Funder

Mikasa City

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3