A Baseband Wireless Spectrum Hypervisor for Multiplexing Concurrent OFDM Signals

Author:

de Figueiredo Felipe A. P.ORCID,Mennes RubenORCID,Jabandžić IrfanORCID,Jiao XianjunORCID,Moerman IngridORCID

Abstract

The next generation of wireless and mobile networks will have to handle a significant increase in traffic load compared to the current ones. This situation calls for novel ways to increase the spectral efficiency. Therefore, in this paper, we propose a wireless spectrum hypervisor architecture that abstracts a radio frequency (RF) front-end into a configurable number of virtual RF front ends. The proposed architecture has the ability to enable flexible spectrum access in existing wireless and mobile networks, which is a challenging task due to the limited spectrum programmability, i.e., the capability a system has to change the spectral properties of a given signal to fit an arbitrary frequency allocation. The proposed architecture is a non-intrusive and highly optimized wireless hypervisor that multiplexes the signals of several different and concurrent multi-carrier-based radio access technologies with numerologies that are multiple integers of one another, which are also referred in our work as radio access technologies with correlated numerology. For example, the proposed architecture can multiplex the signals of several Wi-Fi access points, several LTE base stations, several WiMAX base stations, etc. As it able to multiplex the signals of radio access technologies with correlated numerology, it can, for instance, multiplex the signals of LTE, 5G-NR and NB-IoT base stations. It abstracts a radio frequency front-end into a configurable number of virtual RF front ends, making it possible for such different technologies to share the same RF front-end and consequently reduce the costs and increasing the spectral efficiency by employing densification, once several networks share the same infrastructure or by dynamically accessing free chunks of spectrum. Therefore, the main goal of the proposed approach is to improve spectral efficiency by efficiently using vacant gaps in congested spectrum bandwidths or adopting network densification through infrastructure sharing. We demonstrate mathematically how our proposed approach works and present several simulation results proving its functionality and efficiency. Additionally, we designed and implemented an open-source and free proof of concept prototype of the proposed architecture, which can be used by researchers and developers to run experiments or extend the concept to other applications. We present several experimental results used to validate the proposed prototype. We demonstrate that the prototype can easily handle up to 12 concurrent physical layers.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference62 articles.

1. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2015–2020 White Paperhttp://url.cn/5maQcaS

2. 5G Vision and Requirements; Technical Reporthttp://www.imt-2020.org.cn/en/documents/download/3

3. 5G cellular: key enabling technologies and research challenges

4. Massive MIMO Networks: Spectral, Energy, and Hardware Efficiency

5. Towards 1 Gbps/UE in Cellular Systems: Understanding Ultra-Dense Small Cell Deployments

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Autism spectrum disorder-specific changes in white matter connectome edge density based on functionally defined nodes;Frontiers in Neuroscience;2023-11-23

2. Optimal Embedding of Heterogeneous RAN Slices for Secure and Technology-Agnostic RANaaS;IEEE Transactions on Network and Service Management;2022-12

3. F-OFDM in a novel form for analyzing 5G networks;Journal of Information Technology and Computing;2022-06-30

4. Physical Wireless Resource Virtualization for Software-Defined Whole-Stack Slicing;2021 IEEE 7th International Conference on Network Softwarization (NetSoft);2021-06-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3