An Innovative, Lightweight, and Sustainable Solution for the Integrated Seismic Energy Retrofit of Existing Masonry Structures

Author:

Longobardi Giovanna1ORCID,Moşoarca Marius2ORCID,Gruin Aurelian3,Ion Alexandru3,Formisano Antonio1ORCID

Affiliation:

1. Department of Structures for Engineering and Architecture, School of Polytechnic and Basic Sciences, University of Naples “Federico II”, Piazzale Tecchio 80, 80125 Naples, Italy

2. Department of Architecture, Politehnica University of Timişoara, Traian Lalescu 2A, 300223 Timişoara, Romania

3. National Institute for Research and Development in Constructions, Urbanism and Sustainable Spatial Development URBAN-INCERC, Strada Traian Lalescu 2, 300223 Timişoara, Romania

Abstract

A large percentage of existing building stock in Italy and throughout Europe is ageing and no longer complies with current regulations, particularly in terms of sustainability. For these reasons, an urgent consolidation plan is needed to ensure an increase in both seismic response and energy response. Indeed, these constructions were built before the actual technical codes, and currently, they are not able to withstand seismic actions. Meanwhile, they are subject to thermal dispersions that could be due to the use of materials with poor properties or construction errors. Among the numerous consolidation techniques, an innovative solution consisting of a coating system has appeared on the construction market in recent decades. It is an integrated solution that simultaneously improves the seismic and energy behaviour of the building. The paper proposes the evaluation of this lightweight and sustainable solution through some experimental tests which were performed at the National Institute for Research and Development in Constructions, located in the city of Timişoara (Romania). The tests were aimed to investigate the out-of-plane behaviour of a masonry wall (1.20 m × 2.40 m × 0.60 m) obtained by combining two smaller panels with mortar and subjecting them to constant vertical force and pushing by an increasing horizontal one. Its response was assessed before and after the application of extruded aluminium alloy base profiles belonging to the system under study.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3