Assessing the Impact of Agricultural Drought on Yield over Maize Growing Areas, Free State Province, South Africa, Using the SPI and SPEI

Author:

Makuya Vuwani12ORCID,Tesfuhuney Weldemichael1ORCID,Moeletsi Mokhele E.23ORCID,Bello Zaid34ORCID

Affiliation:

1. Department of Soil, Crop and Climate Sciences, Faculty of Natural and Agricultural Sciences, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa

2. Agricultural Research Council—Natural Resources and Engineering, Private Bag X79, Pretoria 0001, South Africa

3. Risk and Vulnerability Assessment Centre, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa

4. Agricultural Research Council—Grain Crops, Private Bag X1251, Potchefstroom 2520, South Africa

Abstract

Maize (Zea mays L.) is an essential crop in South Africa serving as a staple food; however, agricultural drought threatens its production, resulting in lower yields. This study aimed to assess the impact of agricultural drought on maize yield in the major areas (Bethlehem, Bloemfontein, and Bothaville) that produce maize in the Free State Province from 1990 to 2020. The study used the Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI) to examine drought occurrences and severity during the maize growing season (October–March). The Standardized Yield Residuals Series (SYRS), Crop Drought Resilient Factor (CDRF), Spearman’s Rank Correlation (rs), and yield loss rate were employed to emphasize agricultural drought impact on maize yield. The results based on the SPI and SPEI show that drought frequently occurred in Bethlehem, followed by Bloemfontein and Bothaville. Drought severity indicated that moderate droughts were prevalent in Bethlehem, while severe droughts were in all areas (Bethlehem, Bloemfontein, and Bothaville) and extreme droughts in Bloemfontein. The agricultural drought’s impact on maize varied across growth seasons and areas. Notably, the lowest SYRS value of −2.38 (1991/92) was observed in Bethlehem. An extremely strong significant correlation (rsSPEI-6 vs SYRS = 0.83, p = 1.07 × 10−8) was observed between the SPEI and SYRS in Bloemfontein during the October–November–December–January–February–March (ONDJFM) season. The CDRF indicated that maize yield was severely non-resilient (CDRF < 0.8) to drought in Bethlehem (CDRF = 0.27) and Bloemfontein (CDRF = 0.33) and resilient (CDRF = 1.16) in Bothaville. The highest maize yield loss of −88.62% was observed in Bethlehem due to extreme agricultural drought. The results suggest that, historically, agricultural drought was a threat to maize production in the studied areas, particularly in Bethlehem and Bloemfontein. This underscores the implementation of sustainable agricultural practices, such as drought-resistant varieties in these areas, to mitigate the impacts of climate change, especially drought, and ensure food security. This is a step toward achieving Sustainable Development Goal 2 (Zero Hunger).

Funder

Water Research Commission of South Africa

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3