Risk and Energy Based Optimization for Fire Monitoring System in Utility Tunnel Using Cellular Automata

Author:

Zhang Ying12,Bai Jitao1ORCID,Diao Yu1,Chen Zhonghao3,Wang Chu1,Yang Kun2,Gao Zeng2,Wei Huajie4

Affiliation:

1. Department of Civil Engineering, Tianjin University, Tianjin 300072, China

2. Tianjin Municipal Engineering Design & Research Institute, Tianjin 300392, China

3. College of Intelligence and Computing, Tianjin University, Tianjin 300072, China

4. China First Metallurgical Group Co., Ltd., Wuhan 430081, China

Abstract

Fire is one of the biggest threats to the safety of utility tunnels, and establishing camera-based monitoring systems is conducive to early fire finding and better understanding of the evolution of tunnel fires. However, conventional monitoring systems are being faced with the challenge of high energy consumption. In this paper, the camera operation in a utility tunnel was optimized considering both fire risk and energy consumption. Three design variables were investigated, namely the camera sight, the number of cameras in simultaneous operation, and the duration of camera operation. Cellular automata were used as a simple but effective method to simulate the spread of fire in a utility tunnel. Results show that as the number of cameras in simultaneous operation increases, the probability of fire capture also increases, but the energy consumption decreases. A shorter duration of camera operation can lead to a higher probability of fire capture, and meanwhile, lower energy consumption. For the duration of camera operation shorter than or equal to the allowable time, the probability of fire capture is significantly higher than that for the duration longer than the allowable time. Increasing the camera sight will significantly increase the probability of fire capture and lower the total energy consumption when a blind monitoring area exists. The total energy consumption of a camera-based monitoring system roughly satisfies hyperbolic correlation with the duration of camera operation, while the probability of fire capture can be predicted based on the number of cameras in simultaneous operation through a power model. The optimal design for the modeled tunnel section is two cameras in simultaneous operation with a tangent monitoring area. The duration of camera operation should be as short as possible, at least shorter than the allowable time. The study is expected to provide a reference for the sustainable design of energy-saving utility tunnels with lower fire risk.

Funder

Project of Tianjin Drainage Management Affairs Center

Technology Project of Tianjin Municipal Transportation Commission

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3